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ABS TRACT

.O 0

General harmonic solutions have been found for the

camber problem of a ducted propeller with finite blade

number in uniform motion at zero incidence. The fluid is

assumed inviscid and incompressible. Principal attention

is focused on the zeroth harmonic based on a successive

iteration of the two-dimensional or sectional Glauert

coefficients. In matrix form, the speed of convergence and

identification of the limit are studied. Appropriate

tables for typical shrouds are provided together with an

illustrative examplu. Both the iteration procedure and

direct simultaneous inversion yield solutions for the higher

harmonics.
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NOMENCLATURE

am0 ,a m Glauert coefficients for Am , m > 0
see Eqs. (3.3)

(am  column matrix of Glauert coefficients
for A , m > 0m

(ar, column matrix of coefficients of cosine
expansion in 0 of (Arm + Arm)
see Fqs. (3-9)

A chordwise variation of sine component of
mNth harmonic of y ; see Eqs. (1.3)

A rm chordwise variation of radial velocity
induced on shroud by sine component of

mNth harmonic of bound blade vortices;
see Eqs. (1.11)

A r .chordwise variation of radial velocity
m induced on shroud by sine component of

mNth harmonic of shed blade vortices;
see Eqs. (1.11)

bmO b mv Glauert coefficients for B M m > C
see Eqs. (3.3)

(bi column matrix of Glauert coefficients
m B , m>O

m

(b ,] column matrix of coefficients of cosine
expansion in of Br m  m > 0

see Eqs. (3-9)

B chordwise variation of cosine component
m of mNth harmonic of y ; see Eqs. (1.3)
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B rchordwise variation of radial velocityinduced on shroud by cosine component

of mNth harmonic of shed blade vortices;
see Eqs. (I.11)

c shroud chord; see Fig. 1.1

C Co, jth iterate of Glauert coefficients for
CO , j = 0, 1, 2, ... ; see Eq. (2.5)

c net average pressure on shroud, pcsitive
P radially outward; see Eq. (2.35)

(c 0  column matrix of Glauert coefficients
of C0

(c 0(J)) column matrix of jth iterate of Glauert
coefficients for C j = 0, 1, 2 ...

see Eq. (2.20)

C chordwise variation of mNth complex
m Fourier harmonic of y ; see Eq. (1.2)

c0) W jth iterate of C0 ; see Eq. (2.4)

gmN . h mN Fourier integrals arising from shed
vorticity; see Eqs. (1.12)

,/f-l and dummy summation index

i unit vector in r-direction; see Fig. 1.1

IA , IB  "particle displacements" for higher har-
monic equations in decoupled form
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integral matrix operator for singular
part of K , identified as infinite
unit matrix; see Eqs. (3.5)

iteration number and dummy summation
index

J propeller advance ratio, U/fR

[J] integral matrix operator for singular
part of K ; see Eqs. (3.7) and (3.8)

k dummy summation index

K kernel function of final governing
m equations - for m = C only K-

appears; see Eqs. (l.y) and (l i4)

K regular part of K M see Eqs. (1.9)
m and (3.4) m

K regular part of K , equal to (R )m m m

dummy summation index

m harmonic solution index, generally
m = 0, 1, 2 ...

[M] matrix of eigenvectors of [P] ; see
Eq. (2.24)

N number of blades

[C (J] - 1Oi)

[c K' (CIj - [pj)
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Fourier coefficients for expansion of R;for zeroth harmonic ) ;

Eq. (2.7)

PA ' PB propeller "forcing functions" for higher
harmonic equations in decoupled form;
see Eqs. (3.1)

P kI elements of [P] , identified as "curva-
ture coefficients" for m = 0 ; see
Eqs. (2.10) and (2.18)

[Pp] integral matrix operator for regular part
of Km ; see Eqs. (2.21) and (3.5)

_q, total induced velocity; see Eq. (1.1)

Qn(w) Legendre function of second kind and
half order

[Q] integral matrix operator for regular part
of Km ; see Eqs. (3.7)

r/R
p

R mean shroud radius at propeller plane;
see Fig. 1.1

R propeller tip radius; see Fig. 1.1

S mN (CmN+ + QmN-3/2 )

U forward flight speed; see Fig. 1.1

x,r,e cylindrical coordinates fixed in pro-
peller; see Fig. 1.1
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x position of propeller plane measured
p downstream from shroud midchord; see

Fig. 1.1

xs rsSes cylindrical coordinates for point on
shroud surface

xvrv, e cylindrical coordinates for position
of vortex element

x, ... x/R

SnK n, coefficients of small argument expansion

nK of Qn_ (W) ; see Eq. (1.8)

strength of bound shroud vortices;
see Fig. 1.1

r strength of bound blade vortex; see
Fig. 1.1

F /RpU

v (s- Yv

AX (Xs -p)

AxpT" (X-s -Xp -U'/R)

E local chordwise shroud slope or camber;
see Fig. 1.1

£ effective shroud camber
e
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K dummy summation index

X shroud chord to diameter ratio, c/2R

X0  ... eigenvalues of [P] , IX 0 > Ix >..
see Eq. (2.29)

X(), . successive approximations to X,.
see Eqs. (2.30)

[AJ diagonal matrix with elements
X 0 , ,X 2 ... ; see Eq. (2.25)

ratio of propeller tip to mean shroud
radius, R p/R

V summation index for Glauert series,
v = 1, 2. 3

a) argument of Legendre function

CD (1 + AX-/2)

S+ x 2 + (l-r) 2 ] / 2r )

W4 (l + [LXpT + (1-rV) /2r V)

"natural frequency" for higher harmonic
equations in decoupled form, mN/JL

T dummy time variable

OT

x



* Glauert variable, x - -X cos 0
see Fig. 2.1

(08 ) column matrix of camber elements for two-
dimensional airfoil with unit Glauert
coefficients; see Eq. (3.6)

angular rotational speed of propeller;
see Fig. 1.1

( )' "denotes total differentiation with
respect to indicated argument

)T transpose of column matrix or row matrix

inverse square matrix

xi



GENERAL HARMONIC SOLUTIONS
FOR THE

DUCTED PROPELLER

INTRODUCTION

In an effort to achieve a general understanding of

the ducted propeller, we have previously formulated a

three-dimensional theory for the forward flight regime at

zero angle of attack. The appropriate mathematical model

was based on the ciassical concepts of vortex propeller

theory for finite blading and of lifting surface theory

for thin wings in inviscid, incompressible flow.

Primary emphasis was placed on the inverse-direct

problem, that is, the determination of the shroud loading

for a given blade circulation distribution. By Fourier

analysis of the radial component of the propeller velocity

field and the bound vortex distribution of the shroud, we

reduced the problem for each harmonic to the inversion of

a coupled pair of line integrals of the Cauchy type.

The zeroth harmonic corresponds to the representation

of the propeller as a generalized actuator disk having the

same radial disk loading as its finite bladed counterpart.

As such, it determines the average shroud load or the most

significant contribution. The higher harmonics give the

time-dependent loading on the shroud.

1
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For the zero harmonic, the pair of integral equations

degenerates to a single integral equation identical to the

equation for an equivalent ring wing with a different

effective camber in a uniform flow. The higher harmonics

may also be decoupled into a similar form, but with a

ditferent kernel because of the swirl of the shroud shed

vortices. Since J. Weissinger2 had formulated the exact

solutions to both of these equations, the solutions were

left at that time implicitly in terms of his results.

The objective of the present investigation is to ob-

tain explicit solutions. In particular, it is desirable

to find the effects of the blade number and loading, the

advance ratio, the position of the propeller plane, the

tip clearance and the shroud chord to diameter ratio in

reasonably simple terms. Except for the influence of the

chord to diameter ratio, this is possible for the zeroth

harmonic by a study of the effective camber. As the chord

to diameter ratio appears in the limits of the integral

in the integral equation, its effect requires the inversion

of the equation. Unlike the two-dimensional thin air-

foil problem, the Glauert coefficients of the direct inver-

sion of the ring wing equation are all coupled by an infinite

set of linear equations of infinite extent 2. Therefore, we

attempted to achieve a simplification through an iteration

of the corresponding two-dimensional, sectional coefficients

which are independently determined. The same would be true
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for the higher harmonics in light of the similarity of the

decoupled form.

Here we have set forth the iteration procedure in de-

tail, as well as an alternative method for the higher har-

monics. Chapter One outlines a brief review of the de-

velopment of the underlying theory and presents a general

discussion of the basic equations to be solved. In Chapter

Two, the solution by iteration is found for the zeroth har-

monic. Any desired order of iteration is carried out in

an explicit form, and in turn, is expressed as the expansion

of a single matrix operator of infinite ordcr. This permits

the evaluation of the condition and speed of convergence

by means of the maximum eigenvalue of the matrix and the

identification of the infinite iterate with Weissinger's

solution. A numerical example is given, the calculations

being based upon the appropriate included tables of cur-

vature coefficients. These coefficients are related to

the coefficients tabulated by the Bureau Technique Zborowski-,

but to check, they are computed independently. Finally,

Chapter Three contains the iteration solution for the higher

harmonics, a direct solution by simultaneous matrix in-

version, and a comparison of the features of these solutions.



CHAPTER ONE

BASIC FORMULATION

1.1 Mathematical Model and Background

We consider a ducted propeller in steady forward flight

U at constant rotational speed 0 and zero incidence in an

inviscid, incompressible fluid otherwise at rest. The shroud

and propeller blades are assumed to be infinitely thin and

the hub radius infinitely small. These assumptions, together

with the restrictions of small shroud camber, moderate chord

to diameter ratio and low disk loading permit the conven-

tional approximations of linearized perturbations.

In a propeller-fixed coordinate syst,±L1 x,r,e , the in-

coming stream has a uniform translation U in the positive

x-direction and a rotational component Qr in the positive

0-direction, see Fig. 1.1. The blades are at rest in this

system, but the duct is rotating about the propeller axis

with the angular speed 2 . However, we may set the duct

rotation equal to zero without altering the potential solu-

tion since we have limited ourselves to axisymmetric ducts

at zero angle of attackI . Consequently, the determination

of the flow is reduced to a steady problem.

The analysis is formulated by the use of appropriate

vortex distributions which satisfy the physical boundary

conditions. For the propeller, we have the classical

4
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representation of a bound radial vortex line of strength (rV)

for each blade and the associated helical sheet of strength

-dr/drv  shed by the line where rv  is the radial distance

to any line element. Consistent with our assumptions, the

helical path of the shed vortex is determined by the incoming

stream. On the other hand, the shroud is composed of bound

ring vortices y which are concentric to the x-axis and

have a radius equal to the mean duct radius R . Since the

disturbance field introduced by the propellcr is not uniform

in the angular direction, these bound vortices are accompanied

by shed vortex cylinders that are composed of helical vortex

elements of strength -q/6 v * Analogous to the vortices

shed from the propeller, their helical pitch is fixed by the

incoming stream.

With these vortex distributions, we may determine the

basic equation for the shroud vorticity in terms of the pro-

peller circulation. That is, we require that the flow be

tangent everywhere on the shroud surface and satisfy the

Kutta-Joukowski condition at the trailing edge. With our

assumptions, this reduces to a familiar thin airfoil approxi-

mation,

Ue(xS) = q, (xsRes) - (es) (1.1)

where E is the local inclination angle of the shroud sur-

face to the x-axis; qi is the sum of the velocities induced
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by the four vortex distributions on the mean shroud surface

X ,R se and i is the local unit vector in the radial

direction. The total induced velocity may be determined by

means of the Biot-Savart law and Eq. (1.1) reduced to the

form of an integral equation for 7 with the propeller con-

tributions transposed to the camber term.

1.2 Reduction of the Governing Equation

Generally, the inversion of a surface integral equation

is inherently complex. However, in the present case as for

the ring wing, the closing of the shroud surface introduces

an essential simplification. In particular, 7(x,e) may

be expanded in a complex Fourier series, or

,e) u Cm(X) eim e (1.2)
m= -

where C vanishes at the shroud trailing edge x = c/2 andm

N is the number of propeller blades of radius R . Onlyp

the harmonic components mN are necessary because of the

periodicity 2n/N of the propeller field. Since y is

real, the complex coefficients for positive (+m) and nega-

tive (-m) integers are complex conjugates, or

2C B + iA
-m m m

2Cm B - iA (1.3)
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UAm and UBm are the real coefficients of the sine and cosine

terms respectively of a trigonometric Fourier series for y

over positive m .

For m = 0 , we note A0 = 0 and 2C0 
= B0  This

is the zeroth Fourier component of the shroud vorticity in

the propeller-fixed coordinates, or equivalently, the time-

independent part in the shroud-fixed coordinates. As such,

its physical role has been shown to determine the time aver-

age difference in shroud inner and outer static pressures.

Substitution of Eq. (1.2) into Eq. (1.1) with the ap-

propriate velocity contributions permits the explicit integratio,

over the angular coordinate and reduces the shroud contribu-

tions to their Fourier components in eimN es . At the same

time the propeller and shroud camber contributions may be

similarly reduced. As a result, the coefficients of these

Fourier components may be equated, forming in general, a pair

of line integral equations for Am  and Bm . In other words,

our original surface integral equation is replaced by a semi-

infinite set of coupled, line integral equations for each

1harmonic

1.3 The Zeroth Harmonic Equation

Since AC 0 C , the integral equation for the zeroth har-

monic is particularly simple. with xs X .... we have

Ce(Xs) = - f c(Xv) KC( v) dxv (1.4)
e s v C V
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where ce  is the "effective" local shroud slope or camber;

K0 , the kernel for the zeroth harmonic; Ai , the separa-
tion of the vortex element and field point LXv E (Xcs-X) ;

and X , the shroud chord to diameter ratio or X c/2R

The effective camber is composed of the physical shroud

camber and the axisymmetric part of the radial field induced

by the propeller at the shroud, or

Ce E e - Br' 0  (1.5)

The propeller term,

BO= N ro ) Q ( 3 ) ri dr21T2 v v0

W3 = 1 + [AxCp + (l-r )2]/2rv (1.6)

depends on the blade number, the advance ratio J - U/Rp

the propeller tip to shroud radius ratio - R p/R , the

slope of the blade circulation distribution F'= d(/RpU)/drv ,

and the propeller plane position x . For convenience, rp
can be expanded in a suitable sine series and Br, 0  ex-

pressed in terms of certain characteristic functions. These

functions, involving numerical integration over the Legendre

function of second kind and first half order Q , have been

tabulated over the range of values of C.u x P 1.C and
p0.75 < I. < 0.99•
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For m = 0 , the kernel is simplified by the absence

of terms corresponding to helical vortices shed from the

shroud. In fact, -K' is the radial velocity distribution

induced by a ring vortex of positive unit strength and unit

radius on a cylinder of which the ring is an element. In

terms of 0 , we have

K v(x 27t xv 1 wl

l v /2 (1.7)

where as in 1q , the prime denotes differentiation with

respect to the argument of the functions. As we approach

the ring, Ax - 0 and ZI3 -0 1 . But near unit argument4,5

Qn- () = Z a (C-l)K + fn(11) z nK (a)1)K (1.8)
K=0 K=0

For Eq. (1.7) with n = 1 we have alC = (51n2 - 4)/2

1,1 , (151n2 - 2)/16 . ... and 1,0 = -1/2 , 1o = -3/16

Therefore, the singular part of -K' is equal to
0

i/2x7rLxi , i.e., in the immediate vicinity of the vortex, thev

flow field is equivalent to a two-dimensional line vortex

tangent to the ring and the integral of Eq. (1.4) must be

interpreted as the Cauchy principal value. On the other

hand, the regular part of the kernel, say = , where
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K E KO + i/27rAxv  (1.)

represents the three-dimensional effect of the ring which

vanishes as the ring radius become infinite. R' behaves
C

as Ax In Ax near the vortex, increases to a maximum anav v

then decays monotonically to zero as Ax v . By inspectionv

of Eqs. (1.7) and (1.8), both the singular and regular parts

of the kernel are antisymmetric about Ax = C . If we
v

compare Eq. (1.4) with Weissinger's ring wing equation for

zero angle of attack, we find that the forms are identical

with "u0 (r)" equal to -27T .

1.4 The Higher Harmonic Equations

For m , J 3 0 , the integral equations for A andm

B are considerably more complex. The essential complica-m

tions arise from the additional terms introduced by the

helical shed vortices which couple the integral equaLions, or

X X
+A = Am K dx + of B K dx-Arm r Am Am Km dv mm v

Bm fBKdv -a A K dx (1.10)

with a M mN/J± The term UArm is the coefficient of the

mNth harmonic in the Fourier sine expansion of the radial

velocity component induced cn the duct by the bound radial

vortex lines which represent the propeller. UAfm and
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UBr1m  are the coefficients of the mNth sine and cosine

harmonics, respectively, in the Fourier expansion of the ra-

dial velocity component induced on the duct by the helical

vortices shed from the blades. These terms are given by

Arm 2 A2 P f 32 Q MN- drv

27r2  pr v
N dr4Tr2j v hmN v

0

B _ N £ m N - ) drv
Bp"m 4r2,. J v mNN v ( . 1

where the argument of QmN- and SmN is 3 of Eq. (1.6),

QmN- is the general Legendre function of second kind and

half order, and S is the sum of QmN+ and QmN-3/2

The functions gmN and hmN are Fourier integrals defined by

gmN(A p r V)

h mN (ap' ,v r)

MN f r QmN- + SmN] m -

C v (cos mNT)

QmN_ and SmN have the argument a4 which is equai to a3

with Ax replaced by the quantity Ax - U /R) , the
p PT PA t

0m- term arising from the axial elements of the helical
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vortices and the SMN term, from the tangential. r is a

variable representing the time for a vortex element, con-

vected by the free stream, to travel from the point oz

shedding to its position on the helix and T E T . For

1± , and so r , less than unity, there is no question aboutV
the behavior of gmN and h . When p is equal to unity,

Eq. (1.8) assures that the singular integrand is integrable,

and the asymptotic form5 of the Legendre function, or

Q (a;) = 7r (2n).' 1 +(.3
n- 2 3n+ (n')2 an+

that it is convergent far downstream.

The kernel function may also be defined in terms of

SmN and gN " We find,

Km(Av) [smN(1 ) - gm(A ,.v)] (1.14)

where gmN has been evaluated at rv = 1 or on the shroud.

To understand the form of Eqs. (1.1C), further descrip-

tion of the kernel function K is necessary. The termm

-AR S' /4w is identified as the mNth harmonic of the radial

velocity induced on the shroud by the shroud bound vortices

in non-dimensional form. In other words, the radial vel-

ocity of a ring vortex of strength UAm sin nNev dxv  is

(U1Am sin mNNvd ) (-ARvSN/47r) , or "in-phase" with the
V r

strength variation.
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In the naighborhood of the ring, the vortex again appears

as a straight, infinite line vortex tangent to the ring

with a strength equal to the local strength, see Eq. (1.8)0

and the integrals of Eqs. (1.10) are interpreted in the

Cauchy principal value sense. As the axial separation is

increased, the induced radial velocity decays, the asymp-

totic behavior determined by Eq. (1.13).

The other term in K' and the terms of K constitute
m m

the influence of the shroud shed vortices. Examination of

these terms reveals that the term Sm/4r contains the "end

effect" of the semi-infinite cylinder of helical vortices

shed from our bound ring vortex at Ax = 0 . In other words,

as we approach the ring, its shed vortices form an effective

planar sheet of vortices which have a constant strength equal

to the rate of change of the local bound vortex strength and

inclined at the angle having the tangent 1/J4 to the x-axis.

This sheet is equivalent to the superposition of two semi-

infinite sheets of vortices, parallel and perpendicular to

the x-axis. But by symmetry the parallel vortices cannot

contribute to the "normal" or radial velocity since the con-

tributions from either side are equal and opposite, see

Fig. 1.2. On the other hand, the vortices perpendicular to

the x-axis form an unbalanced sheet and integrate to a

logarithmic singularity given by Sm/47r , see Eq. (1.8).

The remaining terms gm (Ax ,l) and gmN(i~v1 l) in-

volved in Eqs. (1.10) are both regular, the behavior of
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FIGURE 1.2

DECOMPOSITION OF THE LOCAL SHED VORTEX SHEET
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gmN (ATvl) following from our previous discussion for the

propeller for zero tip clearance. It may be shown that

g M(A v1) hMN(v (1.15)

JP v

and consequently, from Eqs. (1.8), (1.12) and (1.13),

gm (Acv,1) is regular. The logarithmic singularities of

the integrands of both gmN(Aivi1) and hmN(AXv , I) may be

interpreted analogous to Sm/4w . That is, for a field

point downstream of a vortex ring at x , the shed vortices

from the ring locally appear as an infinite planar surface

of constant strength vortices inclined to the x-axis. Only

this time, by symmetry, both the contributions to the "normal"

or radial velocity from the component sheets parallel and

perpendicular to the x-axis cancel.

The kernel function Km or, more important as we will

see, its derivative Km with g' given by Eq. (1.15) has

not been evaluated in general in closed form. For the special

case, however, of infinite advance ratio, the integral equa-

tions decouple, the terms in K vanishing. The K" terms
m m

remain and hmN reduces to simply an integral over £mN-

or a cylinder of semi-infinite straight line vortices parallel

to the x-axis. This may be integrated explicitly and yields

the result,

lim Um 1 mN- vm2 7 r (1.16)j-.v



where "UM" is the function introduced by J. Weissinger in

his ring wing theory. It is a regular function, increasing

with a logarithmic slope from zero at the origin to an

asymptotic value of 7mN/2 as Ax .v for m > 0 Asv

m - , Um/rmN approaches the general form of a unit step

function l(axv )



CHAPTER TWO

DETERMINATION OF THE NET AVERAGE DUCT LOAD

2.1 General Considerations

If we neglect the regular part of the kernel for the

zeroth harmonic, Eq. (1.4) reduces by means of Eq. (1.9)

to the integral equation of the classical two-dimensional

thin airfoil problem. To solve, we introduce a new axial

coordinate 0 such that

X= - cos ¢ (2.1)

where 0 < 0 < r , see Fig. 2.1. Expressing the vortex

distribution C0 (x) in a Glauert series, we can then in-

vert the integral equation and obtain a solution explicitly

in terms of the Fourier cosine coefficients of the effective

camber distribution.

As we have pointed out, R represents the three-

dimensional effect of the shroud. Thus, we can consider

this contribution as a correction to be combined with the

effective camber, permitting an iteration solution of

Eq. (1.4) in the form of the Glauert series. That is,

we may write from Eq. (2.1)

18
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7r

6. + c 0 K 0 sino , d, ,

0
" f -os C _s s dI v  (2.2)

0 C

where the regular part of the kernel is

0=0(X cosv -x Cos (2.3)

and C0  is implicitly a function of .v Then, if we set

C0  equal to zero on the left hand side of Eq. (2.2), we can

find a *'zeroth" approximation from the two-dimensional theory.

Inserting this distribution back into the left hand side, we

determine a first approximation which includes a correction

due to the surface curvature. Subsequently, the procedure

may be repeated. In the limit, it will converge to the exact

solution of Eq. (1.4), or

= lim c0(J) (2.4)

where

c0(J) (j) 1 + cos 0 + - (J)

0  = C00  sin Lsin v (2.5)
v=l

and the superscript (j) denotes the jth iteration,

S 0, 1, 2 ..... Such a solution possesses the familiar
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leading and trailing edge behavior of an infinitely thin,

two-dimensional airfoil, i.e., a square-root singularity at

the leading edge and vanishing perturbational velocity at

the trailing edge.

2.2 Expansion of the Kernel Function

To facilitate the iteration we expand ( in the square
0

0 < 0 < 7r and 0 < 0 < 7r as

OD coc,,,
K 0 ZPk,I(X) co Os cosB0 (2.6)

k=0 L=0

The Fourier coefficients pkI(X) from orthogonality are

?T7 r

pk,,2 - 2 cos k0s cos t o (R d0v dos (2.7)
0 0

for k y e 0 ; Pk,C and p0, are one-half and p,,

one-quarter of these values. Since R' is an odd function0

in Axv , see Eqs. (1.7) and (1.9), we may interchange 0s

and 0v in Eqs. (2.3) and (2.7) and find,

=k,1 = - (2.8)

Consequently, p 0 , 0 1 p1 l , P 2 , 2 "'" all identically vanish.

In addition, we may replace 0s by (n-0s) and 0v by

(7-0) in Eq. (2.7) and show that Ck,2 -  if (k+t)

is an even integer.
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These coefficients may be related to the work of

2J. Weissinger who expanded an integral over a weighted

kernel function instead of the regular part of the kernel.

From this integral designated by "f , we find after

comparison of nomenclature,

= 1_ b (2.9)
k, i T2 V'p.

where the "b 's" are the coefficients he used with v = k

and p. = I for v,1 W 0 but reduced like the p k,is in

Eq. (2.7) for vanishing v and/or p. . The Bureau Technique

Zborowski has tabulated3 the "b 's" for X = 0.5, 1.0, 1.5,vx

and 2.0 and v,4 = 0, 1, ... 7 .

Subsequently, we will find that these coefficients

as such do not appear, but rather the combinations given by,

P Xir (-p 2pkoPk,C k (-k,1 -2k,G)

Pk,1 I (Pk,2 - 2Pk,)

Pk,2 2 k,3 -Pk, )

k,t - ?k,-) (2.10)
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except for k = 0 , in which case they are of opposite sign.

Their values for k,J - 0, 1, ... 7 have been computed

from Eqs. (2.7) and (2.10) by a relaxation procedure6 carried

out until the difference between successive computations is

less than +0.00001. The results over the range of X = 0.25,

0.50, 0.75 and 1.0 are presented in Tables 2.1, 2.2, 2.3

and 2.4 respectively. For X = 0.50 and 1.0, they are in

general the same as found by means of Eq. (2.9) from the

tables of the Bureau Technique Zborowsk13 within a discrepancy

of 0(0.001) or less, except for a few diagonal terms at the

higher values of k and .

2.3 Iterative Solution

We can now pursue the development of the iterative

solution as previously outlined.

First, we reduce Eq. (2.2) to the two-dimensional form
(0) o

for the zeroth approximation C( , or

1L 7T C 0(0) sin 0 v O(.1

e 2 f Cos dv (2.11)
0

7
The solution is given by the classical form of H. Glauert

or Eq. (2.5) with J = 0 . To determine the coefficients,

C0(0) is substituted into Eq. (2.11). After suitable mani-

pulation of the integrand by trigonometric identities, the

integration may be carried out term by term by means of the

well known relation



24

0 0o 0 C'j
0 0 00

'0 0 0 0 0 0 0
o 00

0 000 %

o 0 0
o 0 0 0 0 0 0

o 0 0

0
00

0 m(--4~
o 0 0 0

e< 0 0 0 0 0 0 0
o 0 0 0

044

S~( 00 \
rn 0 0 0 0 0 0 0

04j 0 0 0

E
0~ H

CU 0

rz4 04j ,- 0 0 0 0 0 0
W0 0 0 0

s-4 0
co0 0
C'- 4 0

-4q 0 (\i 0 0 0 0 0
o 0

o 08

(Y) I'D 00 LC)
col 'D 0 0 0 0 0
'D cr) \10 0 0 0 C0

Co 04 LCn 0 0 0 0 0
o 0 0 0) 0 0

0 0 ~ 0 0 0



25

o 0 H-
~0 0 0- F

ko0 0 0 08

0

I' 0
o Cj H4

LA 0 0 0 0 0 0 0

0 0 0

0

o; 41 H- co co
0 H4 H-

II0 4n 0
4 00 0 0 0 0 0

-~0 0 0 0

0
rid

CUj 0
04 0 CUj

CU m 0 H- 0 0 0 0 0
C 0 0 0

CU * *o 0 0

H k0 "0 CUj 0
P4 ~ CUj M 0 F. 0 0 0 0
rz4- 0 0 0 0
0 0; 0; 00

U I

H 0 CD 0 0 0 0 0o 0 0

C.) 0- -I k 0 0

co Ho H r40 91 0 0
CU LAN 4 0 0 0 0

0 Ct- 4- CUj 0 0 0 0
0 H- 0 0 0 0 0

0 0- 0i 0 0 0



26

0 0 0
0 0 0 0 0

C;0 0 0

0

L 0 0 0 0 0 0 0
o 0 0

0 0

0 0 0
I-;

40 0 0 0 0 0o~ 0 0 0

o I

E-4
0 N 0t 0 0o 0

N~ 0 0 0
0 0 0o0

E4I I~ L

0 4 0 0) 0
0 0

Nn OC' 0- ( ~ j 0n 0
C c 10 0 0 0

0q ( r 0 0 0 0
U~ 0 0 0 0

N iC

r-0 4 0~ 0 0 0)



27

o1 0

0 uo
o 0 C

L\ 0 0 0 0 0 0 0
0 0 0

0

00

4.0 0 H- C0 -4 0 0o 0 C 0

CU C

0) C'.J 0 H4.j LC\ I
0 --- 0 CUj 0 0 0

C 0 00

H0 (Y 0 0

P4Cki t.- 0 .o 0D 0 0 0
0 0 0 0

0

0 0: 0

H0 0 0 r- 0 0 0

00 0

0 X 0 C;

o ~ 0 o H r. 0 0 m

0 Y 0 0 0 0

o 0 0 0 0 0

0 H U Y)



28

S Cos Kv d~v sin KO (2.12)

coS 0v - cos s v sin s
0

for K = 0, 1, 2, .... As a result, the contribution for

the singular component of the vortex distribution is constant;

i.e., the uniform induced velocity for a flat plate in two-

dimensional flow. The contribution for each sine harmonic

is a corresponding cosine harmonic. Or,

e= c (0) Z (0) cos Vo (2.13)Ee  2 0 C0 Z OV c

v=l

By orthogonality, then,

7r
*(0) = Z E dos
CO0 7 f e

0

(0) =4 f C co do (2.14)cOV 7T f e Ys

0

for v = 1, 2, .... Eq. (2.14) together with Eq. (2.5)

with j = 0 provides the zeroth approximation with ee as

a function of 0s given by Eqs. (1.5), (1.6) and (2.1).

Note that the signs of Eq. (2.13) are reversed from the usual

two-dimensional airfoil result' because we have defined

the positive sense of the bound vortices according to the

right hand screw rule, see Fig. 2.1.
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Next, we replace C0 by CO 
( 0 ) in the left hand side

of Eq. (2.2) and obtain an equation for the first approximation

C(1) to the bound vortex distribution. This equation is the

same as Eq. (2.11) except that the effective camber is changed

by the additional curvature term. To solve, we substitute

Eq. (2.5) with j = 1 and proceed as before. The right hand

side reduces correspondingly to the form of the right hand

side of Eq. (2.13) with the new coefficients c00 (i) and

Cov (0) . For the left hand side, we use Eq. (2.13) for e

and the expansion of Eq. (2.6) for K ' The integration
0*

over K0 is carried out by means of the integrals,

f Co ov d = l, 2, 3, (2.15)0

r/2 , = 1fcos Ov cos d =

Vv v 0 , 2 -- , 2, 3, 4, ... (2.16)

7/2 , = v - 1 = 0

T Tr/4 , = v - 1 > 0J sin v v  cos v sin v dv 0 =
o V 0, _

-Tr/A , £ = v + 1 (2.17)

and yields in turn a cosine series. Equating coefficients

of like terms, we have
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S(1) 00 (0) + P00 coo (0) + ( 011 o() +

c01 (1 e C01 (0, 1000 ()+P I, col(O +

• (2.18)

Eqs. (2.18) reveal that the first approximation to any co-

efficient of our bound vortex distribution for the zeroth

shroud harmonic is equal to the two-dimensional value of

the coefficient plus a correction. The correction is de-

termined from all the coefficients of the zeroth approxi-

mation weighted by the curvature coefficients Pk,l *

In other words, each of the basic vortex distributions

which represent the effective camber in the two-dimensional

case induce an additional camber when introduced as a

three-dimensional distribution.

This process may be repeated successively. Since

only the superscript varies, we have the expressions,

( cc) (0) + P- C (C l) + P i c 0 +

c1 (j) =c 0 (C) + ( j-+) ~ (j-l)+
c1 = cccO + PlO CC + Pil~l C(1 +"''

(2.19)



3].

for the jth approximation in recursion form. Eq. (2.19) to-

gether with Eqs. (2.4) and (2.5) then constitute the exact

solution for C if the limit exists.

For a syrmnetric effective airfoil or Ee(-X) = Ce(X) , we
have c00(0 1 (0) (0) . 0 from Eqs. (2.14). But

ave Co0 , c0 ,c 014  ..

POX 1 P0 ,3' P0,5 ... are identically zero as well as P2,1'

P2,3' P2 ,5 ... and P4,10 P4,3' P4 .. . and so forth, see
(W) (J)

Eqs. (2.10). From Eqs. (2.19), then, co0  , c02

c04(J) ... 0 for any value of j , reducing the Glauert

series of Eq. (2.5) to only the terms for V = 1, 3, 5

Therefore, the net loading for the zeroth harmonic would be

symmetric about the midchord and zero at both the leading and

trailing edges as required by consideration of the corresponding

solution for the equivalent ring airfoil in reverse flow.

2.4 Convergence of the Iteration

From physical considerations the convergence of the solution

depends on X . If the shroud diameter is infinitely large com-

pared to the shroud chord, P = 0 and C0(i) "converges"
k,f ad 0 cnegs

to the exact, two-dimensional solution in a single step. As

X increases, the three-dimensional effect of the shroud in-

creases, reducing the domination of the Cauchy integral in

Eq. (2.2). The speed of convergence is expected to diminish

accordingly and, in fact, to vanish as X - .

To examine this, we use matrix operations. we define the

infinite column matrix of the Glauert coefficients,
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c(J)

COO1

0 ~ c 02

(2.20)

and the infinite square matrix of the curvature coefficients

PO, P PO,2

Pilo Pill P 1,2

[p] - 2,0 P2,1 P2 ,2

(2.21)

With Eqs. (2.20) and (2.21), Eqs. (2.19) become

(C (J)) = (C0(0)) + [P] (Co0(J-1)) (2.22)

If we apply Eq. (2.22) to the first and subsequent approxima-

tions and use the unit matrix [Ii of infinite order, we have

(c0(j)) = (I j + [p] + [p]2 + ... [p]j) (cC())) (2.23)
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That is, each iteration corresponds to a successive appli-

cation of the matrix of the curvature coefficients. Hence,

the iteration will converge if and only if the limit of the

sum of these operations as j - = , or Neumann series,

exists8 .

Letting [M] be a matrix with columns composed of

the eigenvectors of [P] , we have

[P] = [M] rAj [M] - ' (2.24)

where [M] -1 denotes the inverse of [M] and UAJ is

a diagonal matrix,

X0  0 0

0 1i 0

0 0 0 2

(2.25)

of the associated eigenvalues of [P] or X0 8 X1 0 X2

These elements are numbered such that IX 01 I xII > ).21

where the eigenvalue in [A) is in the same column as its

corresponding eigenvector in [P .

By means of Eq. (2.24), we may express the repeated
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operation of [P] on itself by,

(P]J - [M] rA.j (M]- 1  (2.26)

Substitution of Eq. (2.26) into the jth term of Eq. (2.23)

then yields,

(c 0(W) = [M] (tIj + [Aj + [Aj 2 +

... + [AJJ) [M]- 1 (c(0)) (2.27)

with (rIj + [AJ + [Aj 2 + ... rAJ J ) equal to,

(l+Xo+X2+...X) 0 0

o (l+ X1+X+...X,) 0

o o (l+x2+XL3-.. .)

By inspection, the limit exists if the limiting elements

(+- 0-X2+...), (1+Xl+X2+...), ... exist, or equivalently if

IX 01 < 1 (2.28)
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since X0  is the greatest eigenvalue in absolute magnitude.

This inequality constitutes a criterion for, and assurse

the convergence of, the iteration process.

In principle, we can determine X0  for each chord to

diameter ratio exactly from the secular equation of (P) or

0 = I [P] - 0 ,11 2 . .J I (2.29)

In practice, however, we generally have to resort to an

approximate calculation. One method is to assume a trial

eigenvector of unit elements and operate with [P) succes-

sively. If we choose a corresponding eigenvalue X 0(0) of

unity and normalize the leading element at each step, we have

for the first X () and subsequent approximations,

X() P ( o./ (0)

>,0 2 ): zs o~ P )/xo(l)
j z ,

> 0(3) p ( k z Pj)/ X(2)
k ji PO,k Aj ji 0

(2.30)

We have computed X0  for X = 0.25, 0.50, 0.75 and 1.00

from Eqs. (2.30) and Tables 2.1, 2.2, 2.3 and 2.4 respectively.
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The results are given in Fig. 2.2 and Table 2.5 and overlap X

for X - 0.5, 1.0, 1.5, and 2.0 computed from the BTZ data3 .

Immediately we see from Eq. (2.38) that our solution

converges, at least for 0 4j X ' 2 . We see also that the

speed of convergence decreases as anticipated. That is,

from Eq. (2.27) X 0 determines the accuracy of the jth

iteration. Since X increases with increasing X , the
0

number of iterations for convergence to a prescribed ac-

curacy increases.

We have no numerical data beyond a chord to diameter

ratio of two. On the other hand, the radial flow induced

by a vortex element of a vortex ring through a point on the

shroud can not be as "large" as the "infinite" contribution

of the element at the point itself unless the shroud radiis

is zero. Consequently, the extremum eigenvalue should con-

tinue to increase, approaching unity asymptotically as

X - - . We will see later that X 1 Physically, it can

not return to zero.

2.5 Example

To illustrate the iteration procedure we have computed

the net shroud pressure distribution of the average load for

a particular ducted propeller with an effective conical

camber.

The distribution selected for the propeller circulation

is the typical distribution which was previously used
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TABLE 2.5

EXTREMU4 EIGENVALUE Xo OF EP]

0

PRESENT BTZ

0.00 0.000 0.000

0.25 0.030

0.50 o.o86 0.086

0.75 0.1148

1.00 0.210 0.210

1.50 0.317

2.00 0.402
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or

F'(21343) (2 xin 7rk - xin 27rk) (2.31)

where £ S r/R . It represents a disk loading, neglectingp

inflow, of 41.1 psf at U = 200 mph and STP. For the values

of the parameters we take,

J =1

N =2

x =0
p

= - 1.00e 1.

= 2/3

= 0.95 (2.32)

The corresponding geometrical shroud camber E has been

plotted in Fig. 2.3. The actual shape of the shroud can be

obtained by numerical integration.

Only c00 (0) is different from zero. From Eqs. (2.14)

and (2.20), the zeroth approximation to the Glauert coefficients

of C0 is
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-0.0349

0.0000

0 0.0000

.~ (2.33)

To find the values of Pk,j 0 we interpolate the data for

X = 0.50 and X = 0.75 of Tables 2.2 and 2.3 and obtain

0.104 0 0.052 0 0.000 0 0.000 . . .

0.208 0.126 0 -0.023 0 0.000 0

0.045 0 0.030 0 -0.008 0 0.000

0.000 -0.008 0 0.011 0 -0.004 0

0.000 0 -0.004 0 0.006 0 -0.002

0.000 0.000 0 -0.002 0 0.004 0

0.000 0 0.000 0 -0.001 0 0.002

Now (c0  may be approximated by means of Eq. (2.23),

the number of iterations determined consistent with (c0(0))

and the accuracy afforded by [P] . This requires
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XoJ < 0.0005 or j = 4 since X0 = 0.128 , see Fig. 2.2.

Accordingly, ([I] + (P+ ... P] ) in

1.119 0 0.060 0 0.000 0 0.000 •

0.266 1.144 0.015 -0.026 0 0.000 0

0.052 0 1.033 0 -0.008 0 0.000

-0.002 -0.009 0 1.011 0 -0.004 0

0.000 0 -0.004 0 1.006 0 -0.002

0.000 0.000 0 -0.002 0 1.004 0

0.000 0 0.000 0 -0.001 0 1.002

and

-0.0391

-0.0093

-0.oo18

0.0001

(2.34)



43

These results are substituted into the Glauert series

and the difference in the average pressure coefficient across

the shroud Zp] , taken positive radially outward, is com-

1
puted from the relation

E = - 2 Co  (2.35)p0

It has been plotted in Fig. 2.4, together with the cor-

responding distribution for the effective airfoil in two-

dimensional flow, i.e. j = 0 . The influence of the shroud

curvature is about 39% at the midchord.

In Table 2.6 we have also presented c ] for each stepp

in the iteration process to show the speed of convergence

and to verify the accuracy of the solution.

2.6 Direct Inversion

J. Weissinger first achieved an exact solution to the

ring airfoil problem by direct inversion2 . His solution may

be related to our iteration procedure Ln the following manner.

When a Neumann series converges, we know that the limit

8is expressible as an inverse matrix , or

([I] [p])- = [Ij + [P] + [P]2 + (2.36)

as j -. , then, Eq. (2.23) becomes from Eqs. (2.4) and (2.36)
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TABLI 2.6

p AT RACH SUCCUSIVZ STEP IN TM 3tRIAT1O PROCS

p

[ 3/C J=o J=1 j-2 J-3 J=4

-0.500 c a d G

-o.483 0.530 0.590 0.599 c.6oo O.6OO

-0.433 0.261 0.297 0.303 0.304 0.304.

-0.354 o.169 0.199 0.204 0.205 0.205

-0.250 0.121 0.149 0.154 C.155 0.155

-0.129 0.091 0.116 0.121 0.122 0.122

0 0.070 0.092 O.O96 0.097 0.097

0.129 0.054 0.072 0.075 C.0C76 0.076

0.250 0.040 0.054 0.057 0.058 0.058

0.354 0.029 0.039 0.041 0.042 0.042

0.433 0.019 0.025 0.026 0.027 0.027

0.483 0.009 0.012 0.013 0.013 0.013

0.500 0 0 0 0 0
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(cO0) = ((I) - [p])-I (co0(0) (2.37)

This is the same as Weissinger's result gotten by substituting

a Glauert series simultaneously into both sides of Eq. (2.2)

and equating like cosine terms, cf. Eq. (2.19) without

the superscripts (j) and (j-l) .

The form of Eq. (2.37) permits two conclusions:

(i) The difference in average pressure across the shroud is

identical to that of an equivalent airfoil with a modified

camber in two-dimensional flow. To derive the modified

camber, we determine the three-dimensional coefficients and

replace them for the corresponding two-dimensional values

in Eq. (2.13). (ii) Since we know the solution by dizect

inversion exists, the inverse matrix ([I] - [p])-i must

exist and I [I] - (PI1 4 0 . Consequently, comparison with

Eq. (2.29) precludes the possibility that X0 = 1 .

Either iteration or direct inversion may be used in

any application, each becoming progressively cumbersome

as X increases. For numerical purposes, iteration affords

a simple evaluation of the computational accuracy and minimizes

the chances for arithmetical errors.



CHAPTER THREE

HIGHER HARMONIC SOLUTIONS

3.1 Methods of Approach

Neither the iteration process nor the equivalent direct

inversion of Eq. (1.4) for the zeroth harmonic depends upon

the nature of the regular part of the kernel. Therefore,

if we can decouple Eqs. (1.10) for the higher harmonics

into a form with a kernel which has a similar Cauchy sin-

gularity, we can utilize the same technique. Fortunately,

we found such a way to decouple these equations earlier
1

and so have a solution in effect for the higher harmonics.

An alternate method of solution is possible by direct

inversion of the coupled integral equations. That is, we

follow the development of the integral of the product of

the Glauert series and the kernel function itself, as well

as its derivative, into a cosine series in 0 and then, de-

termine simultaneously the coefficients of like terms.

Generally speaking, either of these approaches is

quite complicated. One simplification is achieved, though,

if we take the limit of infinite advance ratio. In this case

B1, B2. B3 ... C C and the integral equation for Al,

A2, A3. ... is the same as for an equivalent asymmetric

ring wing at zero angle of attack in uniform flow, the

47
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effective asymmetry arising from the circumferential

variation of radial velocity induced by the propeller.

Accordingly, such a limit is of particular interest to

assess the importance of the higher harmonics and to check

the computational procedures of numerical programs.

3.2 Solution by Reduction to Zeroth Harmonic Form

We will only outline here the reduction of the

coupled equations to the zeroth harmonic form.

We let the second integrals on the right hand side

of Eqs. (1.10) be denoted by IA  and IB  respectively.

Since the derivative of Km(X) with respect to Ax

is equal to the derivative with respect to Xs which

can be brought out from under the integral sign of the

first integrals, Eqs. (1.10) so represent a set of first

order, linear differential equations in Xs To separate

IA , we take the derivative of the first equation and

subtract a times the second; or to separate IB F we

multiply the first by a and add to the derivative of

the second. Both results are of the form of a second

order, linear differential equation for a simple harmonic

oscillator subject to a forcing function. That is, we

view IA  and IB as "particle displacements" and the

axial coordinaLe x5  as "time". The "motion" is un-

damped with a "natural frequency" a . The "forcing

functions" are,
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P A (Arm + A r)" - (BrJm)

PB (BrJm)" + a (Arm + A rIm) (3-1)

From these differential equations, solutions for IA

and IB may be found separately which provide decoupled

equations for AM  and BM  *

For the inhomogeneous solutions, we determine the

"indicial response" to a unit step function and use Duhamel's

method of superposition. If the resulting equations are

differentiated with respect to x and the differentiation

is carried back inside the integrals IA  and I . the

final equations assume the form,

xx
S PAx) cos= M(X) KmAX V) di v

x

J tx) cos ax dx = ] Bm(xv) ) div (3.2)

Eqs. .3.21 are now identical in structure to Eq. (1.4)

and yield to solution as before, though in Jietail they

are quite complex.

Comparing the terms on the left hand side by means of
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Eqs. (1.5), (1.6), (1.11) and (3.1), we see that several

additional terms as well as two integrations, i.e. on

and x , are involved. These integrations are further

aggravated by the "integral" presence of the advance ratio

J and the blade number N In the zero harmonic, they

appear simply as factors of the propeller contribution to
E .

e

On the other hand, the relative complexity of the

terms on the right hand side of Eqs. (1.4) and (3.2) is

not so great. Only a few more terms and an integration on

are imposed. Previously no parameters appeared in the

kernel. Now we have J , p , m and N or explicitly, the

combinations J L and mN , which along with X enter

in the curvature coefficients. We also notice that the

kernel K' is not antisymmetric about Ax = 0 becausem v

of gmN(Axvl) or h (Axvl) , see Eq. (1.12). This
mN v mN v

extends the calculation of the corresponding Fourier

coefficients Pk,1 for the expansion of the regular part

of the kernel K" to include all values of k and ,m

no coefficients vanishing identically.

Besides the inhomogeneous solutions to the differential

equations for IA  and IB , there are also homogeneous

solutions. The corresponding load distributions which they

produce may be found in the same way as the Am  and Bm

for the inhomogeneous solutions, but the physical interpre-

ta:ion of these distributions is not yet clear.
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3.3 Direct, Simultaneous Inversion

Rather than decouple the governing equations by differ-

entiation, we can express them in matrix form as for the

zero harmonic and solve by direct, simultaneous inversion, i.e.

we assume both Am  and Bm  in the form of a Glauert series

A = am i + cos + 7 a sin Vm m0 sin 0 amy n
V=l

B = bm1 + Cos b sin vO (3.3)m mO sin 0 my
V=l

and substitute in Eqs. (1.10). With suitable Fourier ex-

pansions of K and Km  the integrals over Am  and B

may be written as pure cosine series in the Glauert angular

variable 0s for the position on the shroud. The propeller

terms Arm I A .m  and BF0m  can be expressed in a similar

fashion. Equating like coefficients, we may write the set

of linear equations in the Glauert coefficients as a matrix

equation and invert.

As noted earlier. K has a logarithmic singularity,

see SmN of Eq. (1.14) and Eq. (1.8). consequently, if we

mNm
define a regular part K

2

Km E K + i7- I 2
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the terms in Km may be reduced right away from the

zeroth harmonic, or from Eqs. (2.1), (2.12), (2.15),

(2.16), (2.17) together with Eqs. (3.3) and R' ex-
m

pressed in the double Fourier series of Eq. (2.6), cf.

Eqs. (2.13) and (2.37),

f K" d = - s [OK,] (am)

Am m v K

f B'Km dv = - (0s)T [OK'] (b)

-x

[0K,] rI -P] (3.5)

The matrix (s )T  is defined by,

T

-cos Os

(0 )T -1= 2 -cos 20s

(3.6)
-I
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where "T" denotes a transpose or row matrix. [Ij is

the unit matrix and (P) in the matrix of Eq. (2.21) having

the elements of Eqs. (2.7) and (2.10) with R' in place
m

of K" The remaining matrices (a m  and (b ) are column

matrices of the form of Eq. (2.20) with the Glauert

coefficients of Eqs. (3.3) respectively as elements.

For the reduction of the terms in K of Eqs. (1.10),m

we proceed in a similar manner and separate the singular and

regular parts. The logarithmic term arises in the calculation

of the average shroud pressure coefficient. It has been

evaluated by means of integration by parts, along with

the Glauert integrals of Eqs. (2.12) and a related integrali.

The regular part may be expanded and written exactly as

before. Thus.

X
I Am K dx =- ( s) [0K] (am

A I m dv (OS T[K (aM)

f Bm Km dXv - )T [)K] (bM
-x

[OK ] (j] - [Q] (3.7)

The matrix [J) comes from the singular part and is

given by.
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o 0 0 0 0 IC

o 0 0 0I~ 0 I0

o) 0 0<C' 0 -I

Co 0 <-: ~ C 0

r. 0 exJ 0 0 0 C

qqI
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The matrix [Q] from the regular part is analogous to

[P] in Eq. (3.5) with the elements Pk, replaced by

Ok,J in Eq. (2.21), the Fourier coefficients Pk,2 by

qk° in Eq. (2.10), and K by in Eq. (2.7).

To complete the matrix form of Eqs. (1.10), we

set

AFm + A(m = (Os )T (a,,")

BE m = (Os)T (by.) (3.9)

where (a F, and (byJ are column vectors. The elements

are derived from Eqs. (2.14) using (Arm + AFpm) and Brm

respectively instead of E e

From these results and Eqs. (3.5) and (3.Y), Eqs. (1.10)

give

(ap.r) = - CK'] (am) -o [ (b M)

Kbe (b [0 )1[ I(
bK b+o[O] (am (3.10)

By suitable manipulation, we may solve and obtain,

-(a, + y K' I (b r

1 C [K +2 K,]- K

K' K K K



56

-01 F-l (b
(b-[= K bF ,) - [0 ar ,

m [0 ] - 1 [0 ,] + a2 [oaK, -  [OK] (3.11)

if we assume that all the inverse matrices exist. The

matrix [0K ]-  can be removed by multiplication with

[OK ] ; and the matrix [0 K,-1 can be expanded as for the

zeroth harmonic, see Eq. (2.40).

Eqs. (3.11), then, constitute the solution by this

method. The homogeneous solutions correspond to Eqs. (3.10)

with the terms (a,,) and (br) suppressed, requiring

the determinant of the common denominator of Eqs. (3.11)

to vanish.

3.4 Comparison of Methods

Which of these methods is better for numerical cal-

culations is difficult to judge. The first method imposes

an additional differentiation and integration of the pro-

peller contributions, but the second method imposes the

determination of the Fourier coefficients for both m

and K . On the other hand, the total number of operationsm

appear less for the first method, but the second method in-

volves fewer types of operations.

By either method. the complexity of the calculations

demand every simplification and utmost care. In particular,

the limiting case of infinite advance ratio should be carefully

checked. For this case the equations naturally decouple
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and the kernel is related by Eq. (1.16) to Weissinger's
function "UM" which has been computed for three harmonics.

The corresponding Fourier coefficients have been computed

by the Bureau Technique Zborowski3 over a range of values

and the propeller terms have been simplified by explicit

evaluation of the inner integrations over the wake.



CONCLUSIONS

An iteration procedure has been developed for the

general harmonic solutions to the equations for the ducted

propeller with finite blade number in uniform motion at

zero incidence. Solutions have also been obtained by

direct inversion.

The results for the zeroth harmonic or the average

shroud load show:

Each iterate is expressed in identical form and is
given explicitly in terms of the effective sectional
c:aber and the chord to diameter ratio.

The iteration procedure reduces to a matrix form
which permits rapid numerical calculations.

The number of iterations required for a prescribed
computational accuracy may be estimated a priori.

The solution by iteration converges in the limit
to the direct inversion of the ring airfoil problem
by J. Weissinger.

The distribution of the average static pressure
difference across the shroud is identical to the
load on the equivalent airfoil in two-dimensional
flow.

The results for the higher harmonics reveal:

The equations may be decoupled into the same form
as the equation for the zeroth harmonic and solved
by iteration.

An alternative method for solution by direct, simul-
taneous inversion appears to offer more promise for
future studies.

58



59

The inherent complexity of these harmonics requires
careful consideration of their significance to design
before their calculation in attempted.

To assess the magnitude of these harmonics and to
check out any computational program for them, the
special case of infinite advance ratio is recommended
for initial evaluation.

The iteration procedure may be applied to several other

problems; for example, the two-dimensional airfoil in a

bounded stream10 and the translational characteristics of

the GEM11 . It affords not only important physical insight,

but also marked simplicity.



REFERENCES

1. Ordway, D. E., Sluyter, M. M., and Sonnerup, B. 0. U.,
Three-Dimensional Theory of Ducted Propellers,
THERM, Incorporated, TAR-TR 602, August 1960.

2. Weissinger, J., ZUr Aerodynamik der Rinqflqels in
inkompressibler Str5mung, Zeitschrift fUr Flugwissen-
schaften, Heft 3/4, pp. 141-150, March/April 1956.

3. Ladurner, 0., Theoretical Investigation and Examination
by Measuring Tests in What a Degree the Economy of Flying
Vehicles is Influenced by Pre-Cambered Skeletons of Air-
foils Closed in Themselves, Bureau Technique Zborowski,
DA-91-508-EUC393, August 1959.

4. Sonnerup, B. 0. U., ExPression as a Legendre Function
of an Elliptic Integral Occurring in Wing Theory,
THERM, Incorporated, TAR-TN 59-1, November 1959.

5. Sluyter, M. M., A Computational Program and Extended
Tabulation of Legendre Functions of Second Kind and
Half Order, THERM, Incorporated, TAR-TR 601, August 196C.

6. Bartholomew, G. E., Numerical Integration Over the
Triangle, Mathematical Tables and Other Aids to Com-
putation, pp. 295-298, October 1959.

7. Glauert, H., The Elements of Aerofoil and Airscrew Theory,
2nd Edition, Cambridge, pp. 87-93, 1948.

8. Courant, R., and Hilbert, D., Methods of Mathematical
Physics, 1st English Edition, Volume 1, Interscience
Publishers, Inc., 1953.

9. Hough, G. R., The Aerodynamic Loading on Streamlined
Ducted Bodies, THERM, Incorporated; to be published.

60



61

10. Green, A. E., The Two-Dimensional Airfoil in a Bounded
Stream, The Quarterly Journal of Mathematics (Oxford),
I8, pp. 167-177, 1947.

11. Royce, W. W., and Rethorst, S., Translational Character-
istics of Ground Effect Machines, IAS Paper No. 61-79,
January 1961.


